Kparxue cooGuenus OHAH N°5 [31]-88 JINR Rapid Communications No.5 | [31]-88
YAK 539.12.01 ’

PHENOMENOLOGY OF PRODUCTION PROCESSES
OF AN ASYMPTOTICALLY LARGE NUMBER OF HADRONS

1.D.Mandzhavidze, A N Sissakian

A classification "is proposed for possible asymptotic production
cross sections 0, with respect to n which is independent of concrete
models of strong interactions and a physical meaning of the classifica-
tion is explained on the basis of the statistical physics picture.

The investigation has been performed at the Laboratory of Theore--
tical Physics, JINR.

deHOMEHOIOTHA IIpouecCOB pPOXXOeHHA
aCHMIITOTHYECKH GONBILOro YKucaa aJIpOHOB

U Maupxasuaze, A.H.Cﬁcamm

Hpennaraerca knacauduxaiya BoOIMOXHBIX aCHMITTOTHYECKHX Cee-
HHA POXJIEHHA N aJIpOHOB 0 p» HE 3aBHCAILAA OT KOHKPETHLIX MOJIENeH
CHNTBHBIX B3aHMOMEHCTBHHA, H Ha OCHOBE CTaThMIUYeCKOMH KapTHHBI
NOACHAETCA (HIUIECKHA CMBIC paccMaTpHBaeMoit KJ1accupHKaUMu,

Pa6ora nbmom;ena B JlaGoparopun TeopetHueckoin dusukn OUSH.

1. Let us describe the multiple production of hadrons when
their number 0 is very large

n > n(s). ‘ (1)

Here 1(8) is the mean multiplicity defining the natural scale of values
D at a given energy. Interest in this region (1) stems from the expec-
tation to get further information that would refine our knowledge
of strong interactions, '

Since there is no quantitative theory, it would be well to develop
a general picture of physical phenomena in the region (1) which is
independent of model notions formed by investigations in the region
n ~ . We shall construct this phenomenological picture on the basis
of the statistical mechanics by representing a final state of the pro-
cess as a (microcanonical) ensemble . For this purpose we introduce
the density matrix p(g8, z), such that the production cross section
of n particles is
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where I; is the Bessel function of an imaginary argument (for a de-
tailed derivation of formula (2) see, for instance, ref.”1/ ),

At large n integration in (2) can be performed by the saddle point
method. First, we should find the solutions of the equations (state)

JE =-é§ﬁ—ln'p(l3.z). (3)
n=29_10p(8,z2). (4)
dz

Under this definition of integrals in (2), 1/8 means the gas temperatu-
re of particle production and z means activity (i.e.,(1/8)1n z is the
chemical potential).

Now we take advantage of the fact that the asymptotics o, with
respect to n is defined by the leftmost singularity p(B8,z) in z and
weakly depends on the nature of the singularity. On the basis of the
statistical mechanics we assume p(B, z) to be a regular function of
z inside the circle |z| = 172/ _ It E, is the leftmost singularity, then
from general considerations one would expect one the following possi-
bilities to be realised:

b) 2, = (5)
) 1<z <w

thus providing a classification of possible asymptotics we search for.
Now let us elucidate what physical conditions the quantity gz, de-
pends on.

2. First, it is to be noted that the singularity p(g, z) at finite
% is treated as an indication of a phase transition /23 . For instance,
let 8 be such that particles are combined il}go clusters*. Then, the

d-
—ﬁdl -1/d
number of clusters of ¢ particlesis ~e , Where of d is

the cluster surface energy (92?4 s the cluster surface area). Then

* More precisely, the decay of clusters produces particles.
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will be singular at z = 1. This singularity indicates a first order phase
transition (condensation).

In calculating the relevant o, we consider the following analog
model. Let us cover the volume, into which particles are produced,
by the net and let the presence of a particle in the node be denoted
by (-1) and the absence by (+ 1).

Now we take advantage of the fact that this model of lattice gas
is well described by the Ising model. Switching on a magnetic field
H we can contral the number of down spins, i.e.é e number of produ-
ced particles. This means that activity z = e~ and H acts as a
chemical potential.

Then, the density matrix p in the continuous limit is determi-
ned by the functional integral’ 4’/

-8(p)
p(B,2z) = [Tpe =, &)
where the action
S/\(#)=fdx[%(Vu)2-c#2+d#2-Ml] (8)
and |
e ~(1-B/B); A-H. ~ ©)

Here 1/,8c is the phase transition temperature. Assume that B> Bc ,
i.e., the average spin <u># 0. To simplify the calculations we assume
that 8/B, >> 1 (this ensures small fluctuations in the vicinity of
the chosen <p>),

Singularity in X arises due to the following reason. At H = 0
the potential

V o=-ep? s du2; e,a>0 (10)

has two minima at uy =:v(¢/2a) . Switching on X <0 we destroy
the degeneracy. The left minimum at p =-v(e/2a) appears to be
lower than the right one. Then, the system in the right minimum (it
is described by up spins, which means the absence of -produced par-
ticles) turns out to be unstable: a tunneling into a lower (stable) mini-
mum is possible,
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The above instability is associated with the branching point in
the complex plane } at { = 0 and the discontinuity provides /6’
az(ﬁ )
a (B) ~TH®
Jmp(B,2) = ——-é-—1 i e , 11)

where a, and a, are independent of Q.
Using (11) we find that the solution (4) has the form

- 8p2a,
Z = exp{—-—n}'? (12)
. n

which corresponds to the following asymptotics

3 23
p_(B)as S TAL (13)

i.e., we see that the singularity at g = 1 is associated with the follow-
ing class of asymptotics: o, > 0(e™® ).

It is to be noted that p,(B) is determined by the contribution
of only Jmp and metastable states, whose decay is described by Rep,are
insignificant.

The contribution considered above describes the decay of an
unstable (with respect to particle production) state. This decay pro-
duces clusters and if the size of a cluster is larger than a critical one,
cluster’s size infinitely increases with time. During this motion the
cluster walls ’accelerate”, i.e., the larger the number of particles for-
ming a cluster, the smaller energy is needed to add one particle into
a cluster’%®. Just this phenomenon is observed in the decrease of
z with increasing n, see (12).

3. Let us continue the discussion of (7) at B8 < 8,. In this case
the potential (10) has the only minimum at £ =~ 0. By switching on
the external field there arises a mean field 7 = g(H) that in the first
apptoximation can be found from

Zlelp + 4apd = A, : (14)

At large K, which corresponds to asymptotics in n, eq. (14) has the
solution

P = (Vaa)' (16)
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Estimation of the integral (7) in the vicinity of this minimum provides

7 '}'(lnz)q3 :
p(B,z) ~e i y=v(B) >0. (16)

We see that in the case under consideration the singularity is atz =
= z = o0 .

Equation (4) has the solution

Z . exp (303 (17
4y

that increases (in contrast with the one considered in sec. 2) with n,
With (17) one can easily find that

= 4

-yn

Y - -
p(B)-e . 7=7B)>0, (18)
i.e., decreases faster than e-n,

4. We should like to emphasize that the above considered ana-
log model does not account for the nature of the singularity p(8,z) at
finite z. Therefore, we should clarify our arguments. However, it fol-
lows from general considerations that the singularity p(8,z) at finite
2 testifies to a phenomenon similar to the phase transition. This means
that the particpe production should be considered as a result of the
decay of “’clusters”. This process can be described by refining formula
(6) as follows: Let the probability of tne i th "cluster” (i = 1,2,..))
of mass m, to decay into n, particles be @p, (mi) . Then, neglecting
the interaction between “clusters” (see also ref. ’7/) we have

p(B,z) =expi [ %a(m)e-ﬁmt(z.m)l, (19)

m
[+]

where o(m) is proportional to the average number of mass clusters
and

t(z,m) = £ z%_(m), t(1,m) =1. (20)
n=1

The “Boltzmann” factor e Fm in (19) arises due to the energy-momen-

tum conservation laws. Assuming in (19) (m-(1/8)Int) to be the total

energy of a “cluster”” and replacing the integral by the sum, we can

arrive at a formula analogous to (6). The phase transition, described
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in sec. 2, in terms of formula (19) corresponds to the integral diver-
gence in the upper limit at z = 1.

As an example, let us consider the case when t(z, m) is singular
at z = z,, 1< z, < = . For instance, let

-1
t(z.m) =(——— . > 0. (21)

Taking into account that an average number of particles produced in
the decay of a "’cluster” of mass m

a(m) = Lz, m),_, (22)
dz
we can express z, through n(m). For formula (21) we get that

z(m) =14 2. (23)

It is to be noted that irrespective of the type of singularity only
the assumption about t(z,m) tending to infinity at z = z o defines
by (22) the position of a singularity on the right from unity. More-
over, with increasing m the singulatiry moves to the left. Then, accor-
ding to the momentum energy conservation laws the production of a
particle in the decay of one cluster” will dominate in the asympto-
tics in n. Indeed, the production of particles in the decay of two “’clus-
ters” ~ t2(z, 5/4) and this contribution in the z plane are associa-
ted with the singularity

) v

AL QLSNP ok D S
n(s/4) n(s)
Assuming that correlations between particles produced in the decay of
one ’cluster” differ from those between particles produced in the
decay of various clusters” the afore-said implies the presence of a
“phase transition” which is reflected in the change of the nature of
correlations with increasing n . However, this transition is smooth
without sharp changes. Therefore, it is better called the ’structure
phase transition”,
Thus, after a structure phase transition

-Bm
p(B,z) = [Wo(m)e t(z,m). (24)

Hence, one can easily see that
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n -
0, (8)ae™ /2®) (25)
i.e., corresponds to the KNO scaling.

Using the above mechanism of phase transition, one can easily find
the range of values of n , where the estimate (25) is valid. The correction
to (25) due to the production of two clusters is ~ exp(~v%/n(1/4),
Hence, if

ny L B(s)n(e/4)
Y f(s) -n(s/4)

the estimate (25) is valid. Assuming that the differences n(s ) —fi(s/4)~
~ 1 the structure phase transition begins at n ~ n2(s) (if the produc-
tion of two clusters has no additional smallness). _

Using (21) one can find the ratio of dispersion D to n with re-
gard to the production of two clusters

(26)

2 -
D*(8) f(s/4)

~ 1 - a— s 27
12(s) n(s) (27)

where the positive constant a takes into account a relative weight
of the production of two clusters. We see that the ratio of dispersion
to average multiplicity increases with energy.

5. Now we shall formulate the main results of the paper.
a) According to our classification the asymptotics

n

a >0(e") : (28)

is associated with the first order phase transition (condensation). Sin-
ce the ground state of the effective potential of the interaction of
hadrons is hardly expected to be unstable, the asymptotics (28) is
improbable; ‘ one would expect that

% S o). (29)

b) The asymptotics

g =0(e™) : : (30)

of necessity has the form of the KNO scaling. A similar asymptotics
is predicted by the inverse binomial distribution”®’ , in the distribu-
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tion’8’ in the distribution over multiplicity of partons in the QCD
jet, in the cascade processes/ % and provides the best agreement with
experiment;/m/ . A structure phase transition at n~ n%(s) is typi-
cal of the asymptotics (30), which naturally accounts for the obser-
ved violation of the KNO scaling and increase in (D/t) with energy |

¢) For the asymptotics

-n
g < 0(e™), (31)
which is typical of the multiperipheral modes 18/ , a slight violation
(at least at modern accelerator energies) of the KNO scaling appears
to be a pure chance since the scale-invariant structure is the privilege
of phase transitions.

In conclusion, we should like to emphasize that the asymptotics
(30) and (31) have roots in various physical phenomena and only the
experimental information in the region n>>fl (up to n ~ 2 ) may
elucidate which of them is realized in practice.
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